Transport Properties of Granular Metals

I. Beloborodov^a, K. Efetov^c, A. Lopatin^a, T. Tran^b, X. M. Lin^a, V. Vinokur^a and H. Jaeger^b

^a Materials Science Division, Argonne National Laboratory

^b James Franck Institute, University of Chicago

^c Theoretical Physics Institute, Ruhr-University, Bochum, Germany

Motivation:

Creation of new artificial materials with programmable electronic properties.

Open questions:

- Understand the role of morphology on Metal - Insulator transition.
- 2. Explain hopping and logarithmic temperature dependences of granular insulators and metals.

Granular metals/insulators in different dimensions

Granular Metals characterized by two conductance's:

 g_0 - grain conductance

 \mathcal{G}_T - tunneling conductance

$$g_0 > g_T$$
 - granular limit

 $g_0 \approx g_T$ - homogeneous limit

Different transport regimes:

Weak coupling between grains

Strong coupling between grains

$$g_T < g_c$$

$$g_T > g_c$$

$$g_c$$
 — critical conductance

INSULATOR

METAL

 $-g_T$

Metal - Insulator transition

Localized electrons : $g_T < g_c$

Problem of hopping transport In granular arrays is two fold:

- 1. origin of finite density of states near Fermi energy
- 2. mechanism of electron tunneling over long distances through array of grains

$$\sigma = \sigma_0 \exp\left(-\left(T_0/T\right)^{\beta}\right)$$

Delocalized electrons : $g_T > g_c$

At relatively high temperatures logarithmic temperature dependence In all dimensions!

Future directions:

- 1. Study of one-dimensional granular arrays, full description of transport in quantum wires
- 2. Investigation of hybrid nanocrystals made of superconductor/ferromagnet components
- 3. Synthesis of novel superconducting nanocrystals in the 5-10nm size range

Phys Rev Lett 91, 246801 (2003); Phys Rev Lett 95, 076806 (2005)

